GAMIT – A Fading-Gaussian Activation Model of Interval-Timing: Unifying Prospective and Retrospective Time Estimation
نویسندگان
چکیده
Two recent findings constitute a serious challenge for all existing models of interval timing. First, Hass and Hermann (2012) have shown that only variance-based processes will lead to the scalar growth of error that is characteristic of human time judgments. Secondly, a major meta-review of over one hundred studies of participants’ judgments of interval duration (Block et al., 2010) reveals a striking interaction between the way in which temporal judgments are queried (i.e., retrospectively or prospectively) and cognitive load. For retrospective time judgments, estimates under high cognitive load are longer than under low cognitive load. For prospective judgments, the reverse pattern holds, with increased cognitive load leading to shorter estimates. We describe GAMIT, a Gaussian spreading activation model of interval timing, in which the decay and sampling rate of an activation trace are differentially affected by cognitive load. The model unifies prospective and retrospective time estimation, normally considered separately, by relating them to the same underlying process. The scalar property of time estimation arises naturally from the model dynamics and the model shows the appropriate interaction between mode of query and cognitive load.
منابع مشابه
Unifying prospective and retrospective interval-time estimation: A fading-Gaussian activation-based model of interval-timing
Hass and Hermann (2012) have shown that only variance-based processes will lead to the scalar growth of error that is characteristic of human time judgments. Secondly, a major meta-review of over one hundred studies (Block et al., 2010) reveals a striking interaction between the way in which temporal judgments are queried and cognitive load on participants’ judgments of interval duration. For r...
متن کاملGAMIT-Net: Retrospective and prospective interval timing in a single neural network
The neural network version of the Gaussian Activation Model of Interval Timing (GAMIT-Net) is a simple recurrent network that unifies retrospective and prospective timing in a single framework. It has two parts. Firstly, a time-dependent signal is generated by a spreading Gaussian activation. Next, a simple recurrent network (SRN) combines information from the Gaussian and its own internal stat...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملCramer-Rao bounds in the estimation of time of arrival in fading channels
This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive b...
متن کاملTime and Frequency Synchronisation in 4G OFDM Systems
This paper presents a complete synchronisation scheme of a baseband OFDM receiver for the currently designed 4G mobile communication system. Since the OFDM transmission is vulnerable to time and frequency offsets, accurate estimation of these parameters is one of the most important tasks of the OFDM receiver. In this paper, the design of a single OFDM synchronisation pilot symbol is introduced....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014